Issue 44, 2023

Triazine diphosphonium tetrachloroferrate ionic liquid immobilized on functionalized halloysite nanotubes as an efficient and reusable catalyst for the synthesis of mono-, bis- and tris-benzothiazoles

Abstract

Aminopropyl-1,3,5-triazine-2,4-diphosphonium tetrachloroferrate immobilized on halloysite nanotubes [(APTDP)(FeCl4)2@HNT] was prepared and fully characterized using different techniques such as FT-IR, thermogravimetric analysis (TGA), SEM/EDX, elemental mapping, TEM, ICP-OES, and elemental analysis (EA). This nanocatalyst was found to be highly effective for synthesis of various benzothiazole derivatives in excellent yields under solvent-free conditions. Furthermore, bis- and tris-benzothiazoles were smoothly synthesized from dinitrile and trinitrile in the presence of this catalytic system. High yields and purity, easy work up procedure, high catalytic activity (high TON and TOF) and easy recovery and reusability of the catalyst make this method a useful and important addition to the present methodologies for preparation of these vital heterocyclic compounds.

Graphical abstract: Triazine diphosphonium tetrachloroferrate ionic liquid immobilized on functionalized halloysite nanotubes as an efficient and reusable catalyst for the synthesis of mono-, bis- and tris-benzothiazoles

Supplementary files

Article information

Article type
Paper
Submitted
13 Aug 2023
Accepted
29 Sep 2023
First published
25 Oct 2023
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2023,13, 31213-31223

Triazine diphosphonium tetrachloroferrate ionic liquid immobilized on functionalized halloysite nanotubes as an efficient and reusable catalyst for the synthesis of mono-, bis- and tris-benzothiazoles

F. G. Zadeh, B. Asadi, I. Mohammadpoor-Baltork, S. Tangestaninejad, V. Mirkhani, M. Moghadam and A. Omidvar, RSC Adv., 2023, 13, 31213 DOI: 10.1039/D3RA05491H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements