Issue 44, 2023, Issue in Progress

Nonlinear dielectric response of dilute protein solutions

Abstract

A theory for the nonlinear dielectric response of dilute protein solutions is presented. The field-dependent dielectric function of the protein solution changes linearly with the electric field squared in the lowest order. The slope of this dependence is expressed in terms of the protein dipole moment M0, its volume fraction in solution η0, and the second osmotic virial coefficient. For practical conditions, the nonlinear dielectric response scales as η03M08. This strong dependence on the protein dipole moment and concentration establishes a sharp contrast between the nonlinear response of solvated proteins relative to the surrounding polar solvent. Nonlinear dielectric response can serve as a sensitive tool for monitoring protein conformations and physiological activity.

Graphical abstract: Nonlinear dielectric response of dilute protein solutions

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
04 Sep 2023
Accepted
19 Oct 2023
First published
24 Oct 2023
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2023,13, 31123-31127

Nonlinear dielectric response of dilute protein solutions

D. V. Matyushov, RSC Adv., 2023, 13, 31123 DOI: 10.1039/D3RA06033K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements