Issue 43, 2023, Issue in Progress

Construction of 3D lithium metal anode using bi-functional composite separator: a new approach for lithium battery

Abstract

With the increasing use of Li batteries for storage, their safety issues and energy densities are attracting considerable attention. The Li metal battery (LMB) with limited capacity in the Li metal anode is one of ideal high energy-density systems due to eliminating the use of traditional anode, elevating the energy density of battery and reducing production costs. However, the side reactions between the electrolyte and metallic Li and the irreversible loss of lithium resources caused by the generation of “dead Li” will directly lead to the loss of battery capacity during the cycling process. Therefore, the cycle life of the LMB with limited capacity in the Li metal anode faces significant challenges. Herein, a bi-functional manganese oxide (MnO)/polypropylene/Li1+xAlxTi2−x(PO4)3 (LATP) composite separator is designed to construct a stable three dimensional (3D) Li metal in the surface of Cu foil for LMB. The MnO can dissolve in electrolytes with low concentration, which can be reduced to produce Mn and Li2O, functioning as nucleating seeds to induce sheet-like Li deposition. The sustainably released MnO also involves in the formation of solid electrolyte interphase (SEI) layer, which can be repaired promptly once damaged by the volume expansion of Li. The LATP coating layer is in situ transferred onto the sheet-like Li, acting as an artificial SEI layer for further protection. The constructed 3D Li metal anode with limited capacity shows improved cycle stability in LiFePO4 cell, which shows a capacity retention of 94.5% after 150 cycles. Our strategy, constructing stable 3D Li metal anode with bi-functional composite separator, will bring a new inspiration for developing high energy density LMB.

Graphical abstract: Construction of 3D lithium metal anode using bi-functional composite separator: a new approach for lithium battery

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
08 Sep 2023
Accepted
09 Oct 2023
First published
13 Oct 2023
This article is Open Access
Creative Commons BY license

RSC Adv., 2023,13, 30086-30091

Construction of 3D lithium metal anode using bi-functional composite separator: a new approach for lithium battery

F. Liu, T. Xiang, J. Xue, S. Jia, J. Yan, H. Huo, J. Zhou and L. Li, RSC Adv., 2023, 13, 30086 DOI: 10.1039/D3RA06129A

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements