Issue 45, 2023

Photochemical reduction of CO2 into CO coupling with triethanolamine decomposition

Abstract

In this work, the impacts of triethanolamine (TEOA) on the performance of photochemical CO2 reduction were investigated in a simple homogeneous system. We demonstrates that CO2 can be converted into CO coupling with the decomposition of triethanolamine in TEOA aqueous solution without other additives under light irradiation. About 7.5 μmol CO product is achieved within 7 h with a maximum apparent quantum yield (AQY) of 0.086% at 254 nm. The isotope labelling experiment confirms that CO product originates from the reduction of CO2 rather than the decomposition of TEOA. In addition, the photochemical system exhibits excellent stability, no obvious inactivation is observed during long-term photochemical CO2 reduction reaction. This work provides a deep understanding of the effects of TEOA on the performance of photocatalytic CO2 reduction. Upon utilizing TEOA as a sacrificial electron donor in photocatalytic system, the contribution of TEOA must be considered once evaluating the catalytic activity of catalysts.

Graphical abstract: Photochemical reduction of CO2 into CO coupling with triethanolamine decomposition

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
27 Sep 2023
Accepted
23 Oct 2023
First published
30 Oct 2023
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2023,13, 31616-31621

Photochemical reduction of CO2 into CO coupling with triethanolamine decomposition

Z. Li, C. Yang, Y. Su, Y. Cheng, Y. Cui, S. Liu and Y. Fang, RSC Adv., 2023, 13, 31616 DOI: 10.1039/D3RA06585E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements