Issue 49, 2023

Reactivity of azido terpyridine Pd(ii) and Pt(ii) complexes towards 4,4,4-trifluoro-2-butynoic acid: structural insight into the triazolato coordination mode

Abstract

The mono- and binuclear azido terpyridine square-planar complexes of ionic formulas, [Pd2(N3)2L]2+ and [Pt(N3)L]+ (L = 1,4-bis(2,2′:6′,2′′-terpyridin-4′yl)benzene), underwent the catalyst-free [3 + 2] cycloaddition coupling with 4,4,4-trifluoro-2-butynoic acid at ambient temperature affording the corresponding triazolate complexes. A mixture of triazolate isomers was generated by these inorganic click reactions. An increase in the solubility of the compounds was achieved by replacing the azido ligand with a triazolato ligand. By calculating the vibrational modes and comparing the total electronic and zero-point energy values, the local minimum structures of the complexes and the nature of the predominant triazolate isomer were verified. The theoretical work was complemented with natural bond analysis to get an insight into the natural charge and electronic arrangement of the metal ion, the hybridization of M–L bonds and strength of M–N bonds.

Graphical abstract: Reactivity of azido terpyridine Pd(ii) and Pt(ii) complexes towards 4,4,4-trifluoro-2-butynoic acid: structural insight into the triazolato coordination mode

Supplementary files

Article information

Article type
Paper
Submitted
29 Sep 2023
Accepted
20 Nov 2023
First published
29 Nov 2023
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2023,13, 34826-34835

Reactivity of azido terpyridine Pd(II) and Pt(II) complexes towards 4,4,4-trifluoro-2-butynoic acid: structural insight into the triazolato coordination mode

A. M. Mansour, K. Radacki, G. A. E. Mostafa, E. A. Ali and O. R. Shehab, RSC Adv., 2023, 13, 34826 DOI: 10.1039/D3RA06656H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements