Issue 51, 2023

Microbial corrosion behavior of pipeline steels in simulation environment of natural gas transportation pipeline

Abstract

Bacteria are introduced into natural gas transmission pipelines through water-driven gas extraction, which can exacerbate the occurrence of pipeline corrosion. This study utilized a micro-reactor to design a simulated corrosion environment that mimics natural gas gathering and transportation pipelines. The objective was to investigate the corrosion behavior of X80 pipeline steel under the combined effects of CO2, Cl-, sulfate reducing bacteria (SRB), and iron bacteria (IOB). Additionally, it aimed to elucidate the influence mechanisms of these two microorganisms on corrosion. Under a humid environment with a total pressure of 8.5 MPa and a partial pressure of CO2 at 0.85 MPa, the corrosion rate of X80 pipeline steel was observed to follow the sequence: IOB > control (asepsis) > SRB + IOB > SRB. During the initial stages of corrosion, highly active IOB becomes the primary factor contributing to corrosion. As corrosion progresses, the concentration of dissolved oxygen in the SRB system gradually decreases while SRB activity intensifies, leading to the formation of FeS through the process of corrosion. The corrosion current density (icorr) exhibited a significant decrease, thereby intensifying localized corrosion of the corrosion products beneath the film. This resulted in a maximum pitting depth of 113.5 μm. Research on the behavior of microbial-enhanced corrosion provides significant guidance in the development and implementation of protective coatings.

Graphical abstract: Microbial corrosion behavior of pipeline steels in simulation environment of natural gas transportation pipeline

Supplementary files

Article information

Article type
Paper
Submitted
12 Oct 2023
Accepted
05 Dec 2023
First published
12 Dec 2023
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2023,13, 36168-36180

Microbial corrosion behavior of pipeline steels in simulation environment of natural gas transportation pipeline

L. Zhu, Y. Tang, J. Jiang, Y. Zhang, M. Wu, C. Tang, T. Wu and K. Zhao, RSC Adv., 2023, 13, 36168 DOI: 10.1039/D3RA06940K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements