Issue 50, 2023, Issue in Progress

Analyzing synthesis routes for BaCuPO4: implications for hydrogen evolution and supercapattery performance

Abstract

In recent years, energy storage and conversion tools have evolved significantly in response to rising energy demands. Owing to their large surface area, superior electric and chemical stabilities, and thermal conductivities, barium copper phosphate (BaCuPO4) materials are promising electrode materials for electrochemical energy storage systems. In this study, the synthesis of nanostructures (NSs) using hydrothermal and chemical precipitation methods and exploring the electrochemical characteristics of BaCuPO4 in asymmetric supercapacitors provides a comparative investigation. Systematic characterization shows that nanomaterials prepared by applying the hydrothermal method have a more crystalline and large surface area than chemical precipitation. In the three cell arrangements, the hydrothermally prepared BaCuPO4 NSs delivered a high specific capacity (764.4 C g−1) compared to the chemical precipitation route (660 C g−1). Additionally, the supercapattery associated with the two electrode assemblages delivers an optimum specific capacity of 77 C g−1. The energy and power density of BaCuPO4//AC NSs were 52.13 W h kg−1 and 950 W kg−1, respectively. A durability test was also performed with BaCuPO4//AC NSs for 5000 consecutive cycles. Further, the coulombic efficiency and capacity retention of BaCuPO4//AC after 5000 cycles were 81% and 92%, respectively. Bimetallic phosphate is comparatively suggested for future perspectives towards HER to overcome the performance of single metal phosphate materials. This is the first approach, we are aware of, for investigating the electrochemical behavior of BaCuPO4, and our results suggest that it may be useful as an electrode material in electrochemical systems requiring high energy and rate capabilities.

Graphical abstract: Analyzing synthesis routes for BaCuPO4: implications for hydrogen evolution and supercapattery performance

Supplementary files

Article information

Article type
Paper
Submitted
07 Nov 2023
Accepted
24 Nov 2023
First published
05 Dec 2023
This article is Open Access
Creative Commons BY license

RSC Adv., 2023,13, 35468-35480

Analyzing synthesis routes for BaCuPO4: implications for hydrogen evolution and supercapattery performance

S. Ali, H. Hassan, M. W. Iqbal, A. M. Afzal, M. A. Amin, A. Alhadrami, N. D. Alqarni and E. Umar, RSC Adv., 2023, 13, 35468 DOI: 10.1039/D3RA07596F

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements