Regioselective hydroesterification of alkenes and alkenylphenols utilizing CO2 and hydrosilane†
Abstract
As an important and attractive C1 building block, the diversified exploitation of CO2 in chemical transformations possesses significant research and application value. Herein, an effective palladium-catalyzed intermolecular hydroesterification of a wide range of alkenes with CO2 and PMHS is described, successfully generating diverse esters with up to 98% yield and up to 100% linear-selectivity. In addition, the palladium-catalyzed intramolecular hydroesterification of alkenylphenols with CO2 and PMHS is also developed to construct a variety of 3-substituted-benzofuran-2(3H)-ones with up to 89% yield under mild conditions. In both systems, CO2 functions as an ideal CO source with the assistance of PMHS, thus smoothly participating in a series of alkoxycarbonylation processes.