Issue 2, 2023

Kinetic investigation of solar chemical looping reforming of methane over Ni–CeO2 at low temperature

Abstract

Leveraging solar thermal energy to drive the chemical looping reforming of methane (CLRM) is a promising method of efficiently and selectively reforming methane to produce syngas using renewable energy. In this work, the role of catalytically active nickel in reaction kinetics, conversion, selectivity, and total syngas production during CLRM over Ni–CeO2 is investigated. Through thermogravimetric analysis (TGA), metallic nickel is shown to help enhance partial oxidation of methane (POM) reaction rates as a result of a lower activation energy reaction mechanism at all oxygen nonstoichiometries, compared to CeO2. For example, reduction rates of Ni–CeO2 at 700 °C are comparable to CeO2 at 900 °C, and no reaction is observed for CeO2 at 700 °C. Further, extended cycling with Ni–CeO2 demonstrated stable reaction rates and yields during CLRM at 700 °C, and SCO remained above 0.98 for the duration of experimentation. Utilizing a larger-scale packed-bed reactor system, Ni–CeO2 also demonstrated comparable methane conversion, syngas production and selectivity to CeO2, but at notably lower operating temperatures, i.e., T ≤ 800 °C. Higher rates of coking were observed during POM over Ni–CeO2; however, all carbon was removed in the subsequent step and accumulation was not observed during extended cycling. A parametric study of gas velocity, temperature, and inlet partial pressure of methane is also presented to examine the effect these operating conditions have on conversion, selectivity, and syngas production. Notably, a tradeoff between conversion and the quantity of syngas produced was observed as gas velocity increased; however, time response of conversion indicates an ideal reaction cut-off time exists where high rates of syngas production can be achieved simultaneously with near complete methane conversion.

Graphical abstract: Kinetic investigation of solar chemical looping reforming of methane over Ni–CeO2 at low temperature

Supplementary files

Article information

Article type
Paper
Submitted
18 Oct 2022
Accepted
06 Dec 2022
First published
09 Dec 2022

Sustainable Energy Fuels, 2023,7, 574-584

Kinetic investigation of solar chemical looping reforming of methane over Ni–CeO2 at low temperature

C. Hill, R. Robbins, P. Furler, S. Ackermann and J. Scheffe, Sustainable Energy Fuels, 2023, 7, 574 DOI: 10.1039/D2SE01452A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements