Sustainable aviation fuel from forestry residue and hydrogen – a techno-economic and environmental analysis for an immediate deployment of the PBtL process in Europe†
Abstract
Sustainable aviation fuels offer the opportunity to reduce the climate impact of air transport while avoiding a complete overhaul of the existing fleet. For Europe, the domestic production of sustainable aviation fuel would even lead to a reduced dependency on energy imports. Biomass-based fuel production in Europe is limited by the availability of sustainable biomass. This limitation can be alleviated by the Power and Biomass to Liquid (PBtL) process, which attains near full biogenic carbon conversion to Fischer–Tropsch fuel by the addition of electrolytic hydrogen. This study evaluates the economic feasibility and environmental impact of the sustainable aviation fuel production from European forest residue based on a region-specific analysis. As of 2020, only a few sweet spots, such as Norway or Sweden, could serve as production sites for sustainable PBtL fuel when the electrical energy for the electrolysis is supplied by the national grid. The grid mix for many other countries is too carbon intensive to justify producing PBtL fuel there. Yet, with the direct usage of renewable electricity sources, a fuel output of 25 Mt a−1 can be reached assuming 33% of all forest residue can be used for fuel production. Under these conditions, the EU goal of providing 32% of the total aviation fuel demand with sustainable aviation fuel in 2040 could be met.