Recent advances in the development of europium(iii) and terbium(iii)-based luminescent supramolecular metallogels
Abstract
In the recent past, special attention has been paid to the development of metallogels as novel luminescent materials from rationally designed gelators with lanthanide ions, especially europium (Eu(III)) and terbium (Tb(III)) metal ions. Lanthanide (Ln(III)) based metallogels possess various useful properties with an extensive range of applications in the field of advanced materials, and electronic and bio-technologies. Lanthanide ions in coordination with appropriate sensitizer ligands can reproduce metal-based optical, redox, and electronic properties in soft gel materials. The optical properties of the luminescent Ln(III) based metallogels can be tuned over the complete visible spectrum (400–750 nm) including the generation of white light by mixing both Eu(III) and Tb(III) with the ligand in various stoichiometric ratios. Additionally, the dynamic nature of the lanthanide–ligand (Ln–N) coordination bond allows the Ln(III) based metallogels to respond to various external stimuli. Luminescent self-healing supramolecular gels using organic ligands as ‘hosts’ and Ln(III) ions as ‘guests’ are also a current topic of research interest. In this review, we discuss and summarize some selected recent examples of newly developed luminescent Eu(III) and Tb(III) based supramolecular metallogels with potential applications in the fields of optoelectronic devices, stimuli responsiveness, self-healing, luminescent films, and sensors.