Issue 11, 2023

Training precise stress patterns

Abstract

We introduce a training rule that enables a network composed of springs and dashpots to learn precise stress patterns. Our goal is to control the tensions on a fraction of “target” bonds, which are chosen randomly. The system is trained by applying stresses to the target bonds, causing the remaining bonds, which act as the learning degrees of freedom, to evolve. Different criteria for selecting the target bonds affects whether frustration is present. When there is at most a single target bond per node the error converges to computer precision. Additional targets on a single node may lead to slow convergence and failure. Nonetheless, training is successful even when approaching the limit predicted by the Maxwell Calladine theorem. We demonstrate the generality of these ideas by considering dashpots with yield stresses. We show that training converges, albeit with a slower, power-law decay of the error. Furthermore, dashpots with yielding stresses prevent the system from relaxing after training, enabling to encode permanent memories.

Graphical abstract: Training precise stress patterns

Supplementary files

Article information

Article type
Paper
Submitted
11 Nov 2022
Accepted
25 Feb 2023
First published
02 Mar 2023

Soft Matter, 2023,19, 2120-2126

Training precise stress patterns

D. Hexner, Soft Matter, 2023, 19, 2120 DOI: 10.1039/D2SM01487D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements