Issue 17, 2023

Effect of the spacer on the structure and self-assembly of FF peptide mimetics

Abstract

We have designed and synthesized a series of FF peptide mimetics with conformationally rigid and flexible spacers to study the effect of spacers on their structure and self-assembly. The results help in understanding biomolecular aggregation and provide a strategy to obtain fractal pattern materials. From X-ray single crystal analysis, the m-diaminobenzene appended FF peptide mimetic adopts a duplex structure stabilized by multiple intermolecular hydrogen bonds. There is also a water molecule bridging between two strands of the duplex. Moreover, the duplex is stabilized by three face-to-face, face-to-edge and edge-to-edge π–π interactions. The duplex formation is also supported by mass spectrometry. In higher order packing, the dimeric subunits further self-assembled to form a complex sheet-like structure stabilized by multiple intermolecular hydrogen bonding and π–π stacking interactions. Moreover, the 1,4-butadiene and m-xylylenediamine appended FF peptide mimetics form stimuli-responsive organogels in a wide range of solvents including methanol. The rheology data of FF peptide mimetic gels as a function of angular frequency and oscillatory strain also supported the formation of strong physically crosslinked gels. The FE-SEM images of the xerogels obtained from different organic solvents show that the network morphology of FF peptide mimetics varies depending on the nature of the solvents.

Graphical abstract: Effect of the spacer on the structure and self-assembly of FF peptide mimetics

Supplementary files

Article information

Article type
Paper
Submitted
16 Mar 2023
Accepted
04 Apr 2023
First published
04 Apr 2023

Soft Matter, 2023,19, 3215-3221

Effect of the spacer on the structure and self-assembly of FF peptide mimetics

O. J. Ibukun, M. Gumtya, S. Singh, A. Shit and D. Haldar, Soft Matter, 2023, 19, 3215 DOI: 10.1039/D3SM00339F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements