The fabrication of bifunctional supramolecular glycolipid-based nanocomposite gel: insights into electrocatalytic performance with effective selectivity towards gold†
Abstract
Recovery, recycling, and reuse of metal waste have been re-intensified in the current era to build a sustainable future. In this context, gel nanocomposites were formulated by in situ reduction of gold within the low molecular weight gel matrix of synthetic glycolipid amphiphiles without using any external reducing/stabilizing agents. This strategy aroused the interest in formulating gel nanocomposites with preferential uptake of gold. The exclusive advantages owned by gold nanoparticle (GNP) embedded hydrogel offer an alternative to decorate the electrode surface without physical deposition/plating of the catalyst. Formation of GNP within the gel matrix was confirmed by the SPR peak in the UV-Visible spectrum. The particle size of 5–7 nm with zeta potential value in the range of −30.5 to −41.4 mV displayed good stability of nanoparticles in the gel matrix. Due to the encapsulation of nanoparticles within supramolecular assemblies of gel, a noteworthy increase in viscoelastic strength was observed, whereas the gelation behavior, melting temperature, and original fibrillar morphology of hydrogel remained intact. This hybrid gel exhibited good ionic conductivity (2.36 × 10−5 S cm−1) with appreciable ionic transport, remarkable oxygen reduction reaction (ORR) augmentation in reduction potential from 0 V to −0.12 V vs. Ag/AgCl as reference electrode, and excellent thermal stability in a wide temperature range. This green and efficient approach can pave the way for creating GNP-embedded hierarchical architecture that can act as bifunctional electrolyte/electrocatalyst material.