Issue 42, 2023

Influence of shape on heteroaggregation of model microplastics: a simulation study

Abstract

Microplastics are a growing threat, especially in aqueous habitats. For assessing the influence on the ecosystem and possible solution strategies, it is necessary to investigate the “fate” of microplastics in the environment. Microplastics are typically surrounded by natural organic matter, which can cause aggregation via favorable interactions. However, the effect of shape and flow conditions on heteroaggregation is not well understood. We perform molecular dynamics simulations of different microplastic particle shapes with smaller spherical organic matter. We find that mostly smooth particles formed compact structures with large number of neighbors with weak connection strength and higher fractal dimension. Microplastics with sharper edges and corners aggregated into more fractal structures with fewer neighbors, but with stronger connections. We investigated the behavior of aggregates under shear flow. The critical shear rate at which the aggregates break up is much larger for spherical and rounded cube microplastics, the compact aggregate structure outweighs their weaker connection strength. The rounded cube aggregate exhibited unexpectedly high resistance against breakup under shear. We attribute this to being fairly compact due to weaker, flexible neighbor connections, which are still strong enough to prevent particles to break off during shear flow. Irrespective of stronger connections between neighbouring microplastics, fractal aggregates of cubes break up at lower shear rates. We find that cube aggregates reduced their radius of gyration significantly, indicating restructuring during shear, while most neighbor connections were kept intact. Sphere aggregates, however, kept their overall size while undergoing local rearrangements, breaking a significant portion of their neighbor interactions.

Graphical abstract: Influence of shape on heteroaggregation of model microplastics: a simulation study

Article information

Article type
Paper
Submitted
01 Aug 2023
Accepted
04 Oct 2023
First published
05 Oct 2023

Soft Matter, 2023,19, 8081-8090

Author version available

Influence of shape on heteroaggregation of model microplastics: a simulation study

B. R. Argun and A. Statt, Soft Matter, 2023, 19, 8081 DOI: 10.1039/D3SM01014G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements