Issue 43, 2023

Unsynchronous conformational transitions induced by the asymmetric adsorption-response of an active diblock copolymer in an inert brush

Abstract

To exploit the chemical asymmetry of diblock copolymer chains on the design of high-performance switch sensors, we propose an analytically tractable model system which contains an adsorption-responsive diblock copolymer in an otherwise inert brush, and study its phase transitions by using both analytical theory and self-consistent field calculations. The copolymer chain is chemically asymmetric in the sense that the two blocks assume different adsorption strengths, which is characterized by the defined adsorption ratio. We found that the conformation states, the number of stable phases, and transition types are mainly controlled by the length of each block and the adsorption ratio. In particular, when the length of the ungrafted block is longer than the brush chains, and the adsorption ratio is smaller than a critical value, the copolymer chain shows three thermodynamically stable states, and undergoes two unsynchronous transitions, where the two blocks respond to the adsorption in a different manner, when the adsorption changes from weak to sufficiently strong. For this kind of three-state transition, the transition point, transition barrier, and transition width are evaluated by using the self-consistent field method, and their scaling relationship with respect to the system parameters is extracted, which matches reasonably well with the predictions from the analytical theory. The self-consistent field calculations also indicate that the conformational transitions involved in the three-state transition process are sharp with a low energy barrier, and interestingly, barrier-free transitions are observed. Our finding shows that the three-state transitions not only specify a region where high performance unsynchronous switch sensors can be exploited, but may also provide a useful model understanding the unsynchronous biological processes.

Graphical abstract: Unsynchronous conformational transitions induced by the asymmetric adsorption-response of an active diblock copolymer in an inert brush

Supplementary files

Article information

Article type
Paper
Submitted
06 Aug 2023
Accepted
04 Oct 2023
First published
07 Oct 2023

Soft Matter, 2023,19, 8423-8433

Unsynchronous conformational transitions induced by the asymmetric adsorption-response of an active diblock copolymer in an inert brush

S. Qi, S. Zhao and Z. Lian, Soft Matter, 2023, 19, 8423 DOI: 10.1039/D3SM01040F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements