Issue 10, 2023

An effective modulation of bulk perovskite by V2CTx nanosheets for efficient planar perovskite solar cells

Abstract

Crystallization modulation and defect passivation are key for high performance perovskite solar cells (PSCs) through suppressing defects in the surface and/or near the grain boundaries (GBs) of solution-processed perovskite films. In this work, we report simultaneous modulation of crystallization and passivation of defects for perovskites through a new vanadium carbide (V2CTx) MXene that is employed in an anti-solvent. The final modified perovskite film showed an improved crystallization, better energy level alignment and higher hole injection with a hole-transporting layer, leading to an increased power conversion efficiency from 20.1% up to 23.47% for planar PSCs, with enhanced device stability retaining over 90% of the initial PCE after 1000 hours exposure under 40–60% relative humidity at 25 °C. We have further employed the synchrotron radiation in situ grazing-incidence wide-angle X-ray scattering (GIWAXS) equipment to monitor the kinetic process of crystallization during spin-coating; it is notable that a lower dimensional perovskite structure (n < 3) was observed in the modified perovskite film during the process of dropping the antisolvent CB with V2CTx, which helps explain the enhanced device stability.

Graphical abstract: An effective modulation of bulk perovskite by V2CTx nanosheets for efficient planar perovskite solar cells

Supplementary files

Article information

Article type
Paper
Submitted
23 Jul 2022
Accepted
31 Jan 2023
First published
31 Jan 2023
This article is Open Access
Creative Commons BY license

J. Mater. Chem. A, 2023,11, 5015-5026

An effective modulation of bulk perovskite by V2CTx nanosheets for efficient planar perovskite solar cells

C. Tian, Y. Yan, S. Feng, J. Wang, Y. Niu, X. Li, H. Ju, Q. Xu, Y. Huang, H. Dong, Z. Liang, B. Dong, L. Li and Y. Yang, J. Mater. Chem. A, 2023, 11, 5015 DOI: 10.1039/D2TA05836G

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements