Issue 1, 2023

Structure regulation induced high capacity and ultra-stable cycling of conjugated organic cathodes for Li-ion batteries

Abstract

A polymerization strategy to integrate conjugated structures with rich redox-active units for lithium ion batteries has been rapidly adopted to realize highly efficient polymer cathodes, because polymerization can solve the poor conductivity issue as well as solubility problem, existing in small organic molecules. However, the structural–property correlation of such polymers has not been systematically investigated, and the great impact of the conjugated structures on the overall performance has not been clearly revealed. In this work, we design and synthesize three novel pyrene-4,5,9,10-tetraone (PTO)-based polymers containing different thiophene derivatives as linking units, poly(2,7-thiophene pyrene-4,5,9,10-tetraone) (P(PTO-T1)), poly(2,7-(2,2′-bithiophene)pyrene-4,5,9,10-tetraone) (P(PTO-T2)) and poly(2,7-(thieno[3,2-b]thiophene)pyrene-4,5,9,10-tetraone) (P(PTO-TT)), to tune their electronic structures for high-performance lithium-ion batteries (LIBs). All these three materials deliver high specific capacity and long-cycle stability, which benefits from the high activity of the PTO units, the good conductivity of conjugated frameworks, and the insoluble properties of the polymers. Moreover, polymers with different thiophene moieties show distinct electrochemical performances, among which P(PTO-TT) exhibits the best rate capability (a reversible capacity of 129 mA h g−1 at a high current density of 2 A g−1 and a high capacity retention of 94% after 1200 cycles). Electrochemical and theoretical analyses reveal that an optimized electronic structure of P(PTO-TT) determined by using the thieno[3,2-b]thiophene (TT) linking units is crucial to realize the excellent battery performance. Our work unveils the structure–property correlation of PTO-based polymers as cathode materials, which provides inspiration for rational design of polymer cathodes for high-performance LIBs.

Graphical abstract: Structure regulation induced high capacity and ultra-stable cycling of conjugated organic cathodes for Li-ion batteries

Supplementary files

Article information

Article type
Paper
Submitted
14 Oct 2022
Accepted
16 Nov 2022
First published
17 Nov 2022

J. Mater. Chem. A, 2023,11, 77-83

Structure regulation induced high capacity and ultra-stable cycling of conjugated organic cathodes for Li-ion batteries

X. Chen, H. Lu, Z. Wu, H. Wang, S. Zhang, S. Mei, G. Long, Q. Zhang and C. Yao, J. Mater. Chem. A, 2023, 11, 77 DOI: 10.1039/D2TA08032J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements