Issue 41, 2023

Fabrication of mesoporous nickel pyrophosphate electrodes and their transformation to nickel hydroxide with decent capacitance in alkaline media

Abstract

The development of high-energy-density electrodes is paramount for the advancement of renewable and clean energy storage materials. In this study, we have devised a synthetic approach to fabricate mesoporous Ni2P2O7 (m-NiPP) electrodes with a decent charge capacity. The method involves the formation of a liquid crystalline mesophase from an aqueous solution containing nickel nitrate hexahydrate salt (Ni(II)), pyrophosphoric acid (PPA), and a non-ionic surfactant (P123). The mesophase solidifies through the polymerization of Ni(II) ions and PPA, ultimately forming a mesostructured Ni2HxP2O7(NO3)x·nH2O semi-solid, which can be subsequently calcined to yield mesoporous Ni2P2O7 (m-NiPP). The gelation and polymerization process can be monitored using gravimetric, ATR-FTIR, XRD, and POM techniques as water evaporates during the transformation. The results reveal that the reaction between the Ni(II) ion and PPA initiates in the solution phase, continues in the gel phase, and concludes upon gentle heating. The same clear aqueous solution can be coated onto a substrate, such as FTO or graphite rods, and then calcined at various temperatures to produce the m-NiPP electrodes, composed of spherical mesoporous NiPP particles. These electrodes remain amorphous over a wide temperature range, but crystallize at approximately 700 °C while retaining their porous structure. However, when exposed to a 3 M KOH solution, the spherical m-NiPP particles undergo a transformation into β-Ni(OH)2 particles. These transformed particles are approximately 1.5 nm thick, equivalent to 3–4 layers, and 7 nm wide, all while maintaining their spherical morphology. This transformation process occurs rapidly for amorphous m-NiPP and proceeds more slowly in the case of crystalline m-NiPP. The resulting electrodes exhibit a substantial charge capacity of 422 C g−1 and an impressive specific capacitance of over 1407 F g−1.

Graphical abstract: Fabrication of mesoporous nickel pyrophosphate electrodes and their transformation to nickel hydroxide with decent capacitance in alkaline media

Supplementary files

Article information

Article type
Paper
Submitted
13 Sep 2023
Accepted
07 Oct 2023
First published
09 Oct 2023

J. Mater. Chem. A, 2023,11, 22384-22395

Fabrication of mesoporous nickel pyrophosphate electrodes and their transformation to nickel hydroxide with decent capacitance in alkaline media

I. Ulu, B. Ulgut and Ö. Dag, J. Mater. Chem. A, 2023, 11, 22384 DOI: 10.1039/D3TA05578G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements