Peptide-triggered self-assembly of collagen mimetic peptides into nanospheres by electrostatic interaction and π–π stacking†
Abstract
Collagen is the most abundant protein in various connective tissues, providing mechanical integrity as well as regulating cellular activities. Self-assembled peptides have been extensively explored to develop collagen mimetic materials, due to their attractive features such as easy synthesis, selective sequences and low immunogenicity. Metal ion-triggered self-assembly of collagen mimetic peptides has recently received increasing interests, since the addition of external stimuli offers programmable control of the self-assembly process. We have for the first time reported a peptide-stimulated self-assembly of collagen mimetic peptides into nanospheres by electrostatic interaction and π–π stacking. We have accidentally discovered that FAM-modified positively-charged triple helical peptide FAM-PRG was highly soluble, while the addition of a single-stranded negatively-charged peptide EOG-10 efficiently drove its self-assembly into well-ordered spherical nanomaterials. Peptide EOG-10 has been shown to mediate similar self-assembly of TPE-modified triple-helical peptide TPE-PRG into luminescent exquisite nanospheres, consistently demonstrating the robustness of this peptide-triggered strategy. Fluorescence monitoring of the interaction of EOG-10 and TPE-PRG at different ratios indicated that EOG-10 specifically binds to TPE-PRG to form a 3 : 1 complex. High salt concentration was shown to inhibit the self-assembly of TPE-PRG with EOG-10, suggesting that their self-assembly was controlled by electrostatic interaction. The self-assembly of TPE-PRG with EOG-10 has been further revealed to require the exact lengths of both peptides as well as complementary sequences without mutations, indicating a pairwise “side-by-side” binding mode. Notably, the identity of the N-terminal residues of X-PRG has been found to play a determinant role in the self-assembly, while non-aromatic residues lost the self-assembling capability, suggesting that π–π stacking and electrostatic interactions collectively modulate the self-assembly of X-PRG and EOG-10. To conclude, we have developed a highly biocompatible and programmably controlled peptide-triggered self-assembly approach to create novel collagen mimetic nanomaterials, which may have great potential in advanced functional materials.