Issue 19, 2023

Improving the osseointegration and soft tissue sealing of zirconia ceramics by the incorporation of akermanite via sol infiltration for dental implants

Abstract

Zirconia ceramics are promising dental implant materials due to their high-grade biocompatibility, high mechanical strength, and distinctive aesthetic appearance. Nevertheless, zirconia ceramics are bio-inert with a lack of osseointegration and soft tissue sealing, which limits dental implant applications. As such, the fabrication of zirconia ceramics with high mechanical strength, excellent osseointegration and soft tissue sealing performance remains a great challenge in the dental restoration field. In this article, a novel zirconia ceramic with akermanite (AKT) modification by the negative pressure infiltration method is presented. The effects of AKT sol infiltration at different times on the morphology, phase composition, mechanical properties, bioactivity, osseointegration and soft tissue sealing of the modified zirconia ceramics have been systematically investigated. The modified zirconia ceramics feature excellent mechanical properties and significantly improved surface roughness, hydrophilia, and apatite mineralization ability as compared with unmodified zirconia ceramics. Furthermore, cell-culture experiment results indicated that the surface modification of zirconia ceramics could promote adhesion, spreading, migration, proliferation and osteogenic differentiation of mouse bone marrow stromal stem cells (mBMSCs), as well as the early adhesion, spreading, proliferation and fibroblast differentiation of human gingival fibroblasts (HGFs) in vitro. The prepared bioactive zirconia distinctively enhanced the alkaline phosphate (ALP) activity, osteogenesis-related gene expression of mBMSCs and fibroblast-related-gene expression of HGFs. The in vivo evaluation confirmed that 15-TZP ceramics could promote bone-implant osseointegration to the greatest extent as compared with pure zirconia ceramics. To conclude, our research has shown that AKT-modified zirconia ceramics can achieve bone integration and soft tissue sealing, indicating that they have a lot of potential for application as a novel dental implant material in the clinical setting.

Graphical abstract: Improving the osseointegration and soft tissue sealing of zirconia ceramics by the incorporation of akermanite via sol infiltration for dental implants

Article information

Article type
Paper
Submitted
31 Jan 2023
Accepted
15 Apr 2023
First published
17 Apr 2023

J. Mater. Chem. B, 2023,11, 4237-4259

Improving the osseointegration and soft tissue sealing of zirconia ceramics by the incorporation of akermanite via sol infiltration for dental implants

W. Zhang, W. Fu, X. Wang and J. Ye, J. Mater. Chem. B, 2023, 11, 4237 DOI: 10.1039/D3TB00190C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements