Issue 21, 2023

Natural polyphenol tannin-immobilized composites: rational design and versatile applications

Abstract

Tannins, which are natural plant polyphenols, are widely used in different fields, especially in biomedical applications due to their unique properties, including high abundance, low cost, structural diversity, protein precipitation, biocompatibility, and biodegradability. However, they fail to satisfy the requirements in some specific applications (e.g., environmental remediation) on account of their water solubility, making their separation and regeneration difficult. Inspired by the design of composite materials, tannin-immobilized composites have emerged as promising and novel materials and combine or even surpass the advantages of each of their components. This strategy can endow tannin-immobilized composites with efficient manufacturing properties, high strength, good stability, easy chelating/coordinating ability, excellent antibacterial property, biological compatibility, bioactivity, chemical/corrosion resistance, and strong adhesive performance, which significantly expand their application in various fields. In this review, initially we summarize the design strategy of tannin-immobilized composites, mainly concentrating on the choice of immobilized substrate (e.g., natural polymers, synthetic polymers, and inorganic materials) as well as the binding interaction (e.g., Mannich reaction, Schiff base reaction, graft copolymerization, oxidation coupling, electrostatic interaction, and hydrogen bonding) between them. Further, the application of tannin-immobilized composites in the biomedical (tissue engineering, wound healing, cancer therapy, and biosensors) and other (leather materials, environmental remediation, and functional food packaging) fields is highlighted. Finally, we conclude with some thoughts on the open challenges and future perspectives of tannin composites. It can be anticipated that tannin-immobilized composites will continuously draw attention from more and more researchers, and further promising applications of tannin composites will be explored.

Graphical abstract: Natural polyphenol tannin-immobilized composites: rational design and versatile applications

Article information

Article type
Review Article
Submitted
28 Mar 2023
Accepted
03 May 2023
First published
18 May 2023

J. Mater. Chem. B, 2023,11, 4619-4660

Natural polyphenol tannin-immobilized composites: rational design and versatile applications

X. Guan, B. Zhang, Z. Wang, Q. Han, M. An, M. Ueda and Y. Ito, J. Mater. Chem. B, 2023, 11, 4619 DOI: 10.1039/D3TB00661A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements