A novel multi-scale pressure sensing hydrogel for monitoring the physiological signals of long-term bedridden patients†
Abstract
For long-term bedridden patients who need to wear diapers, the timely replacement of diapers is very important to ensure their quality of life. Therefore, it is urgent to develop a pressure sensor that can monitor the physiological conditions of patients in real time. Inspired by the multi-scale network structure of the multi-fiber protein in the muscle, a multi-scale hydrogel as a pressure sensor was prepared by introducing micron-scale hydrogel microspheres as physical crosslinking agents. Compared with the traditional polyacrylamide hydrogel (0.17 MPa of compressive strength), the multi-scale hydrogel showed a higher compressive strength of up to 1.37 MPa. Meanwhile, the hydrogel exhibited better pressure sensitivity (0.59 kPa−1) than the existing hydrogels (0.27–0.40 kPa−1). The sensor prepared by this hydrogel could monitor the patient's physiological condition (urine outflow and urinary filling) in real time through the conductivity response to ion concentration and pressure, and then transmit the signal to the caregivers in time to avoid skin damage. This multi-scale hydrogel provided a great convenience for the physiological monitoring of long-term bedridden patients by acting as a pressure sensor.