An aqueous rechargeable and high-capacity zinc ion battery using a novel rGO–V2O5–SiO2 hybrid nanocomposite as a cathode material†
Abstract
We report an aqueous Zn–rGO–V2O5–SiO2 pouch-type rechargeable zinc ion battery (ZIB) with a rGO–V2O5–SiO2 hybrid nanocomposite as the cathode, Zn as the anode, and 0.5 M Zn (CF3SO3)2 as the electrolyte. The rGO–V2O5–SiO2 hybrid cathode, in the presence of an aqueous electrolyte, intercalated Zn2+ ions in its 3D layers due to the high surface area and porosity of the developed nanorod structures. Furthermore, the combined electrical conductivity of rGO and V2O5 with high water adsorption capacity of silica synergistically affects the charge–discharge rate and stability of the ZIB. As a result, the aqueous rechargeable battery depicts a specific charge capacity of 640 mA h g−1 at 200 mA g−1 and a high-performance rate of 890 mA h g−1 at 20 mA g−1 which are further stacked in series to obtain a capacity of 502 mA h g−1 at 12 V. The pouch cell configuration makes this battery a potential candidate for large-scale energy storage applications.
- This article is part of the themed collections: Energy Advances: Highlight India and SDG 7: Affordable and clean energy