Issue 5, 2024

MOF–polymer composites with well-distributed gold nanoparticles for visual monitoring of homocysteine

Abstract

The distribution of gold nanoparticles (AuNPs) on the surface of a metal–organic framework (MOF) plays a crucial role in the catalytic performance of MOF-AuNP composites. This study describes how the physical adsorption (PH@AuNPs-on-U) and chemical modification of AuNPs on the surface of UiO-66-NH2 (U) affect the composites’ catalytic efficiency. After 2-vinyl-4,4-dimethyl-2-oxazolin-5-one (VD) linked to poly(N-2-hydroxypropyl methacrylamide) (PH) with U (UVD-PH), UVD-PH@AuNPs composites were constructed with PH as the capping and reducing reagent. The composites exhibited higher peroxidase (POD)-like activity than PH@AuNPs-on-U for oxidising 3,3′5,5′-tetramethylbenzidine (TMB) with H2O2. The approach demonstrated that the proposed composite-based nanozymes could significantly enhance their catalytic activity and had a highly uniform distribution of PH@AuNPs on the surface of UVD. An assay with the nanozymes for visual detection of homocysteine (Hcy) was developed, displaying a good linear relationship (R2 = 0.998) ranging from 3.34 μM to 30.0 μM and a detection of limit of 0.3 μM. Additionally, the UVD-PH@AuNPs-TMB-H2O2 system successfully monitored serum Hcy after intraperitoneal injection in rats. This study paves a new way for developing MOF-AuNPs with highly uniform surface distribution of polymer@AuNPs to boost its catalytic activity and to detect drugs in real bio-samples.

Graphical abstract: MOF–polymer composites with well-distributed gold nanoparticles for visual monitoring of homocysteine

Supplementary files

Article information

Article type
Paper
Submitted
07 Nov 2023
Accepted
10 Jan 2024
First published
24 Jan 2024

Analyst, 2024,149, 1658-1664

MOF–polymer composites with well-distributed gold nanoparticles for visual monitoring of homocysteine

Y. Liu, C. Cheng, Z. Zhao, W. Liu and L. Qi, Analyst, 2024, 149, 1658 DOI: 10.1039/D3AN01934A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements