SERS detection of thiram using a 3D sea cucumber-like composite flexible porous substrate†
Abstract
Nowadays, trace detection of thiram is in urgent demand due to its widespread application in agriculture and significant harmful effects on public health. In this work, a three-dimensional (3D) sea cucumber-like flexible porous surface-enhanced Raman scattering (SERS) substrate composed of a poly(vinylidene fluoride) (PVDF) membrane, ZnO nanorods, gold films, and Ag nanoparticles (Ag/Au/ZnO/P) has been established for the highly sensitive detection of thiram. The substrate takes advantage of the 3D morphology of the Ag/Au/ZnO system on a flexible porous PVDF membrane to produce abundant plasmonic hot spots. Meanwhile, the employment of an AgNPs/Au shell system combined the benefits of both gold and silver metals, thus guaranteeing stable and sensitive detection. With 4-mercaptobenzoic acid (4-MBA) as a probe molecule, the Ag/Au/ZnO/P substrate exhibited excellent linear detection in the range of 10−11–10−5 M, with a correlation coefficient (R2) of 0.99 and an enhancement cofactor of 7.09 × 107. The substrate exhibited excellent uniformity with a related standard deviation (RSD) value of 3.82% and demonstrated high stability during a 15 d-storage test. In addition, the substrate could detect thiram in an aqueous solution at concentrations as low as 10−10 M with excellent selectivity. Meanwhile, thiram on the surface of apple peel could be easily detected by the Ag/Au/ZnO/P substrate with the “paste-and-peel” method in less than 10 s, and the detection limit could be as low as 0.48 ng cm−2. Overall, the remarkable performance of the Ag/Au/ZnO/P SERS substrate demonstrated its great potential for the environmental monitoring of thiram.