Paper-based analytical device for point-of-care nucleic acid quantification combining CRISPR/Cas12a and a personal glucose meter†
Abstract
Although CRISPR-based nucleic acid detection has great potential in point-of-care testing due to its simplicity, it has been rarely integrated into paper-based analytical devices (PADs), which are attractive platforms to simplify assays. This work introduces a CRISPR-assisted nucleic acid quantification approach integrated into a PAD with signal readout by a personal glucose meter (PGM). Retention of magnetic beads by filter paper and pre-deposition of all required reagents by freeze-drying stabilized with trehalose enabled the indirect quantification of human papilloma virus (HPV) DNA through a PGM readout without complicated user intervention and complex reagent handling. The calculated limit of detection was 57 pM, which is comparable with other amplification-free CRISPR-based assays detecting nucleic acids. The fully integrated device exhibited good storage stability for up to 4 weeks, suggesting its applicability toward practical point-of-care nucleic acid quantification.