Issue 22, 2024

Electrochemical and imaging evaluations of electrochemically activated screen-printed gold electrodes

Abstract

Sulfuric acid is commonly used to electrochemically activate gold electrodes in a variety of electrochemical applications. This work provides the first evaluations of the electrochemical behaviors and a 3D image of an activated screen-printed gold electrode (SPGE, purchased commercially) through electrochemical and imaging analyses. The activated SPGE surface appears rougher than the unactivated SPGE surface when viewed through microtopography images using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Nevertheless, the roughened microscopy structure does not exhibit any substantial changes in roughness factor for the activated SPGE, as indicated by capacitive current analyses. The significant improvement in electrochemical responsiveness of the activated SPGE is mainly attributed to the presence of surface pores created in the microscopic structure as a result of gold oxide layer formation. The presence of surface pores on the activated surface has significantly improved its conductivity by 10-fold. As a result, electron transfer kinetics and mass transports of the activated SPGE are greatly improved. The results presented in this work indicate that the surface of the activated SPGE greatly increased its intrinsic surface pores, and conductivity of the electrode surface and uncovered the electrocatalytic active sites. This significantly improves the activated SPGE's performance in electrochemical applications such as oxygen reduction reaction (ORR). An activated SPGE considerably enhanced limiting current density as well as ∼172 mV versus Ag shifted onset potential to more positive potentials compared to unactivated SPGE.

Graphical abstract: Electrochemical and imaging evaluations of electrochemically activated screen-printed gold electrodes

Supplementary files

Article information

Article type
Paper
Submitted
17 Jul 2024
Accepted
17 Sep 2024
First published
21 Sep 2024

Analyst, 2024,149, 5401-5410

Electrochemical and imaging evaluations of electrochemically activated screen-printed gold electrodes

N. D. Zakaria, I. L. Salih, H. H. Hamzah, T. Sönmez, M. H. Omar, N. M. Nor, K. A. Razak and V. Balakrishnan, Analyst, 2024, 149, 5401 DOI: 10.1039/D4AN00990H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements