On-chip light sheet illumination for nanoparticle tracking in microfluidic channels†
Abstract
A simple and inexpensive method is presented to efficiently integrate light sheet illumination in a microfluidic chip for dark-field microscopic tracking and sizing of nanoparticles. The basic idea is to insert an optical fiber inside a polydimethylsiloxane (PDMS) elastomer microfluidic chip and use it as a cylindrical lens. The optical fiber is in this case no longer seen as only an optical waveguide but as a ready-made micro-optical component that is inexpensive and easy to source. Upon insertion, the optical fiber stretches the PDMS microchannel walls, which has two effects. The first effect is to tone down the intrinsic ripples in the PDMS that would otherwise create inhomogeneities in the light sheet illumination. The second effect is to remove any obliqueness of the channel wall and constrain it to be strictly perpendicular to the propagation of the illumination, avoiding the formation of a prismatic diopter. Through calculations, numerical simulations and measurements, we show that the optimal configuration consists in creating a slowly converging light sheet so that its axial thickness is almost uniform along the tracked area. The corresponding thickness was estimated at 12 μm, or 10 times the depth of field of the optical system. This leads to an at least six-fold increase in the signal-to-noise ratio compared to the case without the cylindrical lens. This original light-sheet configuration is used to track and size spherical gold nanoparticles with diameters of 80 nm and 50 nm.