P3MOT-decorated metal-porphyrin-based zirconium-MOF for the efficient electrochemical detection of 4-nitrobenzaldehyde†
Abstract
A novel hybrid composite integrating conductive poly-3-methoxythiophene and PCN-222(Fe) (porphyrin-metal–organic frameworks) was synthesized using an in situ polymerization strategy. Leveraging the large specific area of MOFs and the low electrical resistance of conductive polymers, the modified electrode proved to be a promising candidate for the electrochemical detection of 4-nitrobenzaldehyde. The electrocatalytic response was measured using differential pulse voltammetry techniques and cyclic voltammetry, where the linear concentration range of analyte detection was estimated to be 0–900 μM and the detection limit was 0.233 μM with high selectivity toward the analyte. The sensor demonstrated repeatability and stability, allowing the direct electroanalytical measurement of 4-nitrobenzaldehyde in real samples with reliable recovery. This methodology expands the application of porphyrin MOFs for the electroanalytical sensing of environmental contaminants.