Issue 47, 2024

Advancements in electrochemical sensor technology for warfarin detection: a comprehensive review

Abstract

Warfarin (WA), the most prescribed oral anticoagulant in patients with atrial fibrillation, is widely utilized for the treatment of various diseases, such as vascular disorders, venous thrombosis, and atrial fibrillation. However, its abnormal concentration is linked to a variety of disorders and diseases, namely bleeding while brushing teeth, skin tissue issues, hair loss, and chest pain. Therefore, WA monitoring in blood serum is vital due to its narrow therapeutic window. Accordingly, WA determination has been conducted using various methods, such as high-performance liquid chromatography, fluorescent, surface-enhanced Raman scattering, and electrochemical methods. Electrochemical methods have received considerable attention due to their outstanding selectivity, remarkable sensitivity, great time efficiency, and cost-effectiveness. Herein, a comprehensive literature survey on electrochemical methods for determining WA is presented. This review discusses the development of various chemically modified electrodes (CMEs). These CMEs, such as multi-wall carbon nanotubes, molecularly imprinted polymers, metal oxide nanoparticles, and polymer nanocomposites, owing to their morphology and structure, high selectivity, high conductivity, and high volume/area ratio, are designed to overcome the limitations of bare electrodes, which include reduced electrocatalytic activity, slower electron transfer rates, and poor sensitivity. Also, this review presents the advantages and disadvantages of various modified electrodes applied in WA detection.

Graphical abstract: Advancements in electrochemical sensor technology for warfarin detection: a comprehensive review

Article information

Article type
Critical Review
Submitted
02 Aug 2024
Accepted
03 Nov 2024
First published
20 Nov 2024

Anal. Methods, 2024,16, 8103-8118

Advancements in electrochemical sensor technology for warfarin detection: a comprehensive review

H. Akbari, M. Rahimnejad, H. Amani and H. Ezoji, Anal. Methods, 2024, 16, 8103 DOI: 10.1039/D4AY01450B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements