Dually crosslinked degradable polyionic micelles for sustained glucose-responsive insulin release†
Abstract
Glucose -sensitive delivery systems hold great promise as a therapeutic approach for high-incidence diabetes owing to their ability to release insulin whenever elevated glycemia is detected. However, they are unstable in a hyperglycemic environment, which leads to short-term sustained insulin release. Herein, we designed dually crosslinked insulin polyionic micelles (DCM@insulin) based on triblock polymers of o-glycol and phenylboronic acid-functionalized poly(ethylene glycol)-poly(dimethylamino carbonate)-poly(dimethylamino-trimethylene carbonate) (mPEG-P(AC-co-MPD)-PDMAC and mPEG-P(AC-co-MAPBA)-PDMATC, respectively) for sustained glucose-responsive insulin release. DCM@insulin with a phenylboronic acid ester structure (first crosslinking structure) enhanced glycemic responsiveness by regulating insulin release in a hyperglycemic environment. Additionally, the UV-crosslinking structure (second crosslinking structure) formed by the residual double bonds in AC units endowed DCM@insulin with the ability to effectively protect the loaded insulin against protease degradation and avoid burst release under multiple insulin release. The in vivo findings demonstrated that DCM@insulin effectively maintained glycemic levels (BGLs) within the normal range for 6 h in comparison to single-crosslinked micelles (SCM@insulin). Therefore, the glucose-responsive and dually crosslinked polyionic micelle system exhibits potential as a viable option for the treatment of diabetes.