Development of plasma technology for the preparation and modification of energy storage materials
Abstract
The development of energy storage material technologies stands as a decisive measure in optimizing the structure of clean and low-carbon energy systems. The remarkable activity inherent in plasma technology imbues it with distinct advantages in surface modification, functionalization, synthesis, and interface engineering of materials. This review systematically expounds upon the principles, classifications, and application scenarios of plasma technology, while thoroughly discussing its unique merits in the realm of modifying electrode materials, solid-state electrolytes, and conductive carbon materials, which are widely used in lithium-ion batteries, sodium ion batteries, metal air batteries and other fields. Finally, considering the existing constraints associated with lithium-ion batteries, some application prospects of plasma technology in the energy storage field are suggested. This work is of great significance for the development of clean plasma technology in the field of energy storage.