Recent progress in multi-resonance thermally activated delayed fluorescence emitters with an efficient reverse intersystem crossing process†
Abstract
Multi-resonance thermally activated delayed fluorescence (MR-TADF) emitters have become an active research topic at the forefront of organic light-emitting diodes (OLEDs) owing to their excellent photophysical properties such as high efficiency and narrow emission characteristics. However, MR-TADF materials always exhibit slow reverse intersystem crossing rates (kRISC) due to the large energy gap and small spin–orbit coupling values between singlet and triplet excited states. In order to optimize the RISC process, strategies such as heavy-atom-integration, metal perturbation, π-conjugation extension and peripheral decoration of donor/acceptor units have been proposed to construct efficient MR-TADF materials for high-performance OLEDs. This article provides an overview of the recent progress in MR-TADF emitters with an efficient RISC process, focusing on the structure–activity relationship between the molecular structure, optoelectronic feature, and OLED performance. Finally, the potential challenges and future prospects of MR-TADF materials are discussed to gain a more comprehensive understanding of the opportunities for efficient narrowband OLEDs.