Aggregation-induced generation of circularly polarized luminescence in naphthaleneimide-based nanostructures with high dissymmetry factor†
Abstract
Extensive efforts have been dedicated towards designing new organic materials that display solid-state fluorescence and possess optical activity, thereby leading to the fabrication of materials emitting circularly polarized light. Existing organic materials usually suffer from two limitations, a low dissymmetry factor (glum) and weak or no fluorescence in the solid state. Herein, we have demonstrated a naphthalene imide-based dyad system that remains fluorescent even in powder form and displays circularly polarized luminescence in its aggregated and solid state with significantly high glum values.