Issue 64, 2024

MXene materials in electrochemical energy storage systems

Abstract

MXenes, due to their unique geometric structure, rich elemental composition, and intrinsic physicochemical properties, have multi-functional applications. In the field of electrochemical energy storage, MXenes can be used as active components, conductive agents, supports, and catalysts in ion-intercalated batteries, metal–sulfur batteries, and supercapacitors. The electrochemical performance of MXene materials is closely related to their distinctive physical and chemical properties, which depend on their geometry, surface functional groups, and elemental composition. How to regulate MXene materials to optimize electrochemical functions is a key scientific challenge. Herein, we correlated the function of MXene materials with their interlayer structure, surface functional groups, and specific catalytic sites, analyzed the electrochemical function of MXene materials, and showed how to design the electrochemical function of MXene materials based on ion/electron transport. Additionally, this feature article provides an outlook on the opportunities and challenges for MXenes, offering theoretical and technical guidance on using MXene materials in energy storage systems.

Graphical abstract: MXene materials in electrochemical energy storage systems

Article information

Article type
Feature Article
Submitted
31 May 2024
Accepted
09 Jul 2024
First published
10 Jul 2024

Chem. Commun., 2024,60, 8339-8349

MXene materials in electrochemical energy storage systems

Q. Gu, Y. Cao, M. Lu and B. Zhang, Chem. Commun., 2024, 60, 8339 DOI: 10.1039/D4CC02659D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements