Responsive DNA hydrogels: design strategies and prospects for biosensing
Abstract
Hydrogels, water-filled networks that can adapt to external stimuli by altering their volume, are known for their high flexibility and biocompatibility. DNA, a critical biomolecule renowned for its exceptional characteristics including information transmission, molecular recognition, and editability, has found widespread applications in the biosensing field as well. The integration of these two biomaterials offers promising opportunities for the development of novel biosensors with enhanced sensitivity, specificity, and adaptability. Therefore, by virtue of the collective features, researchers have recently focused on the construction of responsive DNA hydrogel systems. This feature article describes recent developments in fabricating DNA hydrogels and their applications in the biosensing area. Initially, it focuses on the design strategies employed in preparing DNA hydrogels, encompassing both pure DNA hydrogels and hybridized DNA hydrogels. Subsequently, it summarizes the use of DNA hydrogels in biosensing applications, highlighting their applications in visual detection, electrochemical sensing, and optical biosensing analyses. Furthermore, the underlying responsive mechanisms within these biosensing systems are also described. Lastly, this article presents a comprehensive discussion on the existing challenges and prospects of responsive DNA hydrogels, offering insights into their potential to revolutionize the field of biosensing.