Issue 42, 2024

Urothermal synthesis of metal–organic frameworks

Abstract

While ionothermal synthesis using deep eutectic solvents based on the combination of choline chloride and urea derivatives has been widely explored for metal–organic framework (MOF) synthesis, the alternative approach consisting in using urea derivatives on their own as solvents, albeit promising, remains comparatively underemployed. This highlight article aims to review the field of urothermal synthesis, covering the state of the art of this approach and its potential development. The use of e-urea (2-imidazolidinone, ethyleneurea), the most extensively employed species in this context, is detailed, showing its ability to play diverse roles in MOF construction. Beyond its role as solvent and soft regulator of solution acidity, it can be present in the pore or as a ligand, most commonly in a bridging mode with divalent metal cations via coordination of the carbonyl group assisted by hydrogen bonding of the NH moieties, or yield ethylenediamine as a decomposition product incorporated in the MOF. Furthermore, urothermal synthesis has demonstrated potential for the preparation of chiral architectures and their enantio-enrichment. Alternatives to e-urea in pure form or as a hemihydrate are also presented. The combination of e-urea with other organic solvents or the use of co-ligands have been shown to modulate its tendency to act as a bridging ligand, while fully N-alkylated urea derivatives represent appealing solvents. They have low melting point or can even be liquid at room temperature, making them media of choice, prone to ligation to the metal center in a terminal fashion given the absence of hydrogen bonding donor, favoring removal towards activation. The structures of the materials reported under urothermal conditions are described as well as their properties and applications.

Graphical abstract: Urothermal synthesis of metal–organic frameworks

Article information

Article type
Highlight
Submitted
27 Aug 2024
Accepted
28 Sep 2024
First published
01 Oct 2024
This article is Open Access
Creative Commons BY license

CrystEngComm, 2024,26, 5978-5990

Urothermal synthesis of metal–organic frameworks

M. Teixeira and S. A. Baudron, CrystEngComm, 2024, 26, 5978 DOI: 10.1039/D4CE00859F

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements