Inducing abundant magnetic phases and enhancing magnetic stability by edge modifications and physical regulations for NiI2 nanoribbons†
Abstract
Recently, a magnetic semiconducting NiI2 monolayer was successfully fabricated. To obtain richer magneto-electronic properties and find new physics for NiI2, we studied the zigzag-type NiI2 nanoribbon (ZNiI2NR) with edges modified by different concentrations of H and/or O atoms. Results show that these ribbons hold a higher energy stability, thermal stability, and magnetic stability, and the Curie temperature can be increased to 143 from 15 K for the bare-edged ribbons. They feature a half-semiconductor, bipolar magnetic semiconductor, or half-metal, depending on the edge-terminated atomic species and concentrations, and are closely related to the ribbon edge states, impurity bands or hybridized bands. By applying strain or an electric field, ribbons can achieve a reversible multi-magnetic phase transition among a bipolar magnetic semiconductor, half-semiconductor, half-metal, and magnetic metal. This is because strain changes the Ni–I bond length, resulting in a variation of bond configurations (weight of ionic and covalent bonds) and the number of unpaired electrons. The compressive strain can increase the Curie temperature because it makes the edged Ni–I–Ni bond angle closer to 90°, leading to the FM d–p–d superexchange interaction being increased. The electric field varies the magnetic phase because it alters the electrostatic potential of the ribbon edges, and the Curie temperature is enhanced under the electric field because the ribbon is changed to a metallic state (half-metal or magnetic metal), in which the magnetic Ni atoms satisfy the Stoner criterion and hold a large magnetic exchange coefficient and electron state density at the Fermi surface.