A zero-dimensional hybrid copper(i) bromide single crystal with highly efficient green emission†
Abstract
Lead-free metal halides are considered as alternatives to lead-based perovskites due to their low toxicity, rich structural diversity, and high luminescence properties. We report millimeter-sized single crystals of a new zero-dimensional (0D) copper(I)-based hybrid material, (AEP)2Cu2Br6·2Br·2H2O (AEP = C6H18N33+), which exhibits bright broadband green photoluminescence (PL) at 510 nm with a Stokes shift of 220 nm and a PL lifetime of 121.1 μs. Density functional theory (DFT) calculations and experimental studies reveal that the green light can be attributed to self-trapping exciton (STE) emission. It is worth mentioning that this crystal has a high photoluminescence quantum yield (PLQY) of 90.5%, which is higher than most copper halides.