Issue 5, 2024

Breaking the Hoff/Le Bel rule by an electron-compensation strategy: the global energy minimum of NGa4S4+

Abstract

In tetracoordinate chemistry, there is an attractive scientific problem of how to make the planar configuration more stable than the tetrahedral configuration. For tetracoordinate nitrogen, the abundant studies indicate that the planar tetracoordinate nitrogen (ptN) is far less stable than the tetrahedral tetracoordinate nitrogen (ttN). Herein, we introduced four S atoms to the unstable ptN-NGa4+ and stable ttN-NGa4+ by following an electron-compensation strategy. Surprisingly, ptN-NGa4S4+ is more stable than ttN-NGa4S4+. Thermodynamically, ptN-NGa4S4+ is the global energy minimum, which is 46.7 kcal mol−1 lower in energy than ttN-NGa4S4+. Dynamically, the BOMD simulations indicated that ptN-NGa4S4+ has excellent dynamic stability at 4, 298, 500 and 1000 K, but the ttN-NGa4S4+ is isomerized at 1000 K. Electronically, the HOMO–LUMO gap of ptN-NGa4S4+ (6.91 eV) is much wider than that of ttN-NGa4S4+ (5.25 eV). Moreover, AdNDP analyses showed that the eight 2c–2e Ga–S σ-bonds eliminated the 4s2 lone pair/4s2 lone pair repulsion between the four Ga atoms and provided a strong spatial protection for ptN-NGa4S4+; and that the four 3c–2e Ga-S-Ga π back-bonds could compensate electrons for Ga, weakening the electron-deficiency of Ga. Simultaneously, the double 6σ/2π aromaticity further enhanced the stability of ptN-NGa4S4+. Thus, as the dynamically stable global energy minimum displaying double aromaticity, ptN-NGa4S4+ will be more promising than ttN-NGa4S4+ in gas phase generation.

Graphical abstract: Breaking the Hoff/Le Bel rule by an electron-compensation strategy: the global energy minimum of NGa4S4+

Supplementary files

Article information

Article type
Paper
Submitted
31 Oct 2023
Accepted
02 Jan 2024
First published
03 Jan 2024

Phys. Chem. Chem. Phys., 2024,26, 3907-3911

Breaking the Hoff/Le Bel rule by an electron-compensation strategy: the global energy minimum of NGa4S4+

X. Jia and Z. Du, Phys. Chem. Chem. Phys., 2024, 26, 3907 DOI: 10.1039/D3CP05290G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements