Nuclear quantum effects in gas-phase 2-fluoroethanol†
Abstract
Torsional motions along the FCCO and HOCC dihedrals lead to the five unique conformations of 2-fluoroethanol, of which the conformer that is gauche along both dihedrals has the lowest energy. In this work, we explore how nuclear quantum effects (NQEs) manifest in the structural parameters of the lowest energy conformer, in the intramolecular free energy landscape along the FCCO and HOCC dihedrals, and also in the infrared spectrum of the title molecule, through the use of path integral simulations. We have first developed a full dimensional potential energy surface using the reaction surface Hamiltonian framework. On this potential, we have carried out path integral molecular dynamics simulations at several temperatures starting from the minimum energy well to explore structural influences of NQEs including geometrical markers of the interaction between the OH and F groups. From the computed free energy landscapes, significant reduction of the torsional barrier is found at low temperature near the cis region of the dihedrals, which can be understood through the trends in the radii of gyration of the atomic ring polymers. We find that the inclusion of NQEs in the computation of infrared spectrum is important to obtain good agreement with the experimental band positions.