Issue 8, 2024

Structural diversity in the membrane-bound hIAPP dimer correlated with distinct membrane disruption mechanisms

Abstract

Amyloid deposits of the human islet amyloid polypeptide (hIAPP) have been identified in 90% of patients with type II diabetes. Cellular membranes accelerate the hIAPP fibrillation, and the integrity of membranes is also disrupted at the same time, leading to the apoptosis of β cells in pancreas. The molecular mechanism of hIAPP-induced membrane disruption, especially during the initial membrane disruption stage, has not been well understood yet. Herein, we carried out extensive all-atom molecular dynamics simulations investigating the hIAPP dimerization process in the anionic POPG membrane, to provide the detailed molecular mechanisms during the initial hIAPP aggregation stage in the membrane environment. Compared to the hIAPP monomer on the membrane, we observed not only an increase of α-helical structures, but also a substantial increase of β-sheet structures upon spontaneous dimerization. Moreover, the random coiled and α-helical dimer structures insert deep into the membrane interior with a few inter-chain contacts at the C-terminal region, while the β-sheet-rich structures reside on the membrane surface accompanied by strong inter-chain hydrophobic interactions. The coexistence of α and β structures constitutes a diverse structural ensemble of the membrane-bound hIAPP dimer. From α-helical to β-sheet structures, the degree of membrane disruption decreases gradually, and thus the membrane damage induced by random coiled and α-helical structures precedes that induced by β-sheet structures. We speculate that insertion of random coiled and α-helical structures contributes to the initial stage of membrane damage, while β-sheet structures on the membrane surface are more involved in the later stage of fibril-induced membrane disruption.

Graphical abstract: Structural diversity in the membrane-bound hIAPP dimer correlated with distinct membrane disruption mechanisms

Supplementary files

Article information

Article type
Paper
Submitted
03 Dec 2023
Accepted
01 Feb 2024
First published
02 Feb 2024
This article is Open Access
Creative Commons BY-NC license

Phys. Chem. Chem. Phys., 2024,26, 7090-7102

Structural diversity in the membrane-bound hIAPP dimer correlated with distinct membrane disruption mechanisms

Q. Qiao, G. Wei and Z. Song, Phys. Chem. Chem. Phys., 2024, 26, 7090 DOI: 10.1039/D3CP05887E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements