Effect of exohedral functionalization on the magnetic properties in the dysprosium-containing endohedral fullerene DySc2N@C80(CF2)†
Abstract
We present a quantum-chemical study of the effect of exohedral functionalization with a CF2 group on the lowest electronic states and the zero-field splitting pattern in a potential single-molecule magnet (SMM) compound DySc2N@C80(CF2). Multiconfiguration perturbational methodology is applied to various spin states of the endohedral compound, comparing different active spaces and state-averaging schemes in order to check for the possible involvement of orbitals other than 4f-Dy in the nondynamical electronic correlation and to suggest the most appropriate computational parameters. Combining the spin–orbit coupling calculations with perturbational corrections, we demonstrate that the interactions within the endohedral cluster and with the fullerene cage exert only a small effect on the non-relativistic approximation to the electronic states of the Dy3+ ion, yet they are significant enough to alter the parameters of zero-field splitting depending on the orientation of the DySc2N cluster inside the fullerene cage.