Substituent effects on the selectivity of ambimodal [6+4]/[4+2] cycloaddition†
Abstract
In this work, we report a density functional theory (DFT) study and a dynamical trajectory study of substituent effects on the ambimodal [6+4]/[4+2] cycloaddition proposed for 1,3,5,10,12-cycloheptadecapentaene, referred to as cycloheptadecapentaene. The proposed cycloaddition proceeds through an ambimodal transition state, which results in both a [6+4] adduct a [4+2] adduct directly. The [6+4] adduct can be readily converted to the [4+2] adduct via a Cope rearrangement. We study the selectivity of the reaction with regard to the position of substituents, steric effects of substituents, and electronic effects of substituents. In the dynamical trajectory study, we find that nitro-substituted reactants lead to a new product from the ambimodal transition state via the hetero Diels–Alder reaction, and this new product can then be converted to a [4+2] adduct by a hetero [3, 3]-sigmatropic rearrangement. These results may provide insights for designing more bridged heterocyclic compounds.