Issue 25, 2024

Monitoring the state of charge of vanadium redox flow batteries with an EPR-on-a-Chip dipstick sensor

Abstract

The vanadium redox flow battery (VRFB) is considered a promising candidate for large-scale energy storage in the transition from fossil fuels to renewable energy sources. VRFBs store energy by electrochemical reactions of different electroactive species dissolved in electrolyte solutions. The redox couples of VRFBs are VO2+/VO2+ and V2+/V3+, the ratio of which to the total vanadium content determines the state of charge (SOC). V(IV) and V(II) are paramagnetic half-integer spin species detectable and quantifiable with electron paramagnetic resonance spectroscopy (EPR). Common commercial EPR spectrometers, however, employ microwave cavity resonators which necessitate the use of large electromagnets, limiting their application to dedicated laboratories. For an SOC monitoring device for VRFBs, a small, cost-effective submersible EPR spectrometer, preferably with a permanent magnet, is desirable. The EPR-on-a-Chip (EPRoC) spectrometer miniaturises the complete EPR spectrometer onto a single microchip by utilising the coil of a voltage-controlled oscillator as both microwave source and detector. It is capable of sweeping the frequency while the magnetic field is held constant enabling the use of small permanent magnets. This drastically reduces the experimental complexity of EPR. Hence, the EPRoC fulfils the requirements for an SOC sensor. We, therefore, evaluate the potential for utilisation of an EPRoC dipstick spectrometer as an operando and continuously online monitor for the SOC of VRFBs. Herein, we present quantitative proof-of-principle submersible EPRoC experiments on variably charged vanadium electrolyte solutions. EPR data obtained with a commercial EPR spectrometer are in good agreement with the EPRoC data.

Graphical abstract: Monitoring the state of charge of vanadium redox flow batteries with an EPR-on-a-Chip dipstick sensor

Supplementary files

Article information

Article type
Paper
Submitted
26 Jan 2024
Accepted
01 Jun 2024
First published
05 Jun 2024
This article is Open Access
Creative Commons BY license

Phys. Chem. Chem. Phys., 2024,26, 17785-17795

Monitoring the state of charge of vanadium redox flow batteries with an EPR-on-a-Chip dipstick sensor

S. Künstner, J. E. McPeak, A. Chu, M. Kern, K. Dinse, B. Naydenov, P. Fischer, J. Anders and K. Lips, Phys. Chem. Chem. Phys., 2024, 26, 17785 DOI: 10.1039/D4CP00373J

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements