Biophysical stimulation for bone regeneration using a chitosan/barium titanate ferroelectric composite
Abstract
Herein we report the synthesis of a ferroelectric composed of chitosan (C)/barium titanate (BT) nanoparticles (NPs) with enhanced biocompatibility, non-toxicity, and piezoelectric behavior that can be advantageously used in biomedical applications. FTIR and SEM measurements were performed to assess the mechanism of interaction between the C matrix and BT NPs and their correlation with the biological responses. The dielectric measurements of the as-prepared composites reveal that incorporation of 50% BT NPs in the chitosan matrix leads to a steady increase of the dielectric constant as compared with neat chitosan films. The ferroelectric behavior of the sample was confirmed by the values of the loss factor (0.21–0.003) in the analyzed frequency range (10−1–106 Hz). This behavior suggests that ferroelectric C/BT nanocomposites can act as an active material that promotes accelerated bone regeneration.