Issue 19, 2024

Theoretical insights into the adsorption and gas sensing performance of Fe/Cu-adsorbed graphene

Abstract

The binding mechanism of gas molecules on material surfaces is essential for understanding adsorption and sensing performance. In the present study, we examine the interaction of some volatile organic compounds (VOCs), including HCHO, C2H5OH, and CH3COCH3, on pristine graphene and its Fe/Cu-adsorbed surfaces using first-principles calculations. The results indicate that the adsorption of these molecules on graphene is regarded as physisorption, while chemisorption is observed for Fe/Cu attached surfaces. The binding of sites on molecules and surfaces primarily involves hydrogen bonds for the pure form of graphene. In contrast, stable interactions occur at functional groups such as >C[double bond, length as m-dash]O, –OH with Fe/Cu atoms, as well as C[double bond, length as m-dash]C bonds of π-rings on modified structures of graphene. It is noticeable that stronger adsorption is observed in the case of Fe addition (Gr-Fe) compared to Cu (Gr-Cu), enhancing the gas adsorption and sensing performance on graphene. Remarkably, the graphene surfaces supported by Fe and Cu improved selectivity in detecting VOC molecules, particularly C2H5OH and CH3COCH3 for Gr-Fe, and HCHO for Gr-Cu. Quantum chemical analyses reveal that the Fe/Cu⋯O/C contacts are covalent interactions, contributing significantly to the stability of configurations and sensing properties of Fe/Cu-adsorbed graphene. In summary, the observed improvements in selectivity, enhanced adsorption strength, and the identification of crucial interactions at the surface offer valuable insights into designing highly efficient gas sensors and developing advanced sensing materials.

Graphical abstract: Theoretical insights into the adsorption and gas sensing performance of Fe/Cu-adsorbed graphene

Supplementary files

Article information

Article type
Paper
Submitted
07 Feb 2024
Accepted
16 Apr 2024
First published
17 Apr 2024

Phys. Chem. Chem. Phys., 2024,26, 14265-14276

Theoretical insights into the adsorption and gas sensing performance of Fe/Cu-adsorbed graphene

N. T. Nguyen, D. Q. Ho and N. T. Trung, Phys. Chem. Chem. Phys., 2024, 26, 14265 DOI: 10.1039/D4CP00561A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements