Issue 28, 2024

Switching of photoinduced proton transfer from one six-membered hydrogen-bonded ring to other: a molecule of hydrazine and pH sensor

Abstract

The present study describes photophysical properties of 3-(benzo[d]oxazol-2-yl)-5-bromo-2-hydroxybenzaldehyde (HBOB) and (E)-2-(benzo[d]oxazol-2-yl)-4-bromo-6-(hydrazonomethyl)phenol (HBON) molecules with asymmetric two-way proton transfer sites. The purpose of this study is to know the direction of ESIPT out of the two-way proton transfer pathways in these molecules in both the solid and solution state. The steady state and time-resolved spectral behaviour of HBOB and HBON and a comparison of the spectral features with the two distinct control compounds 2-(benzo[d]oxazol-2-yl)-4-bromophenol (HBO) and (E)-4-bromo-2-(hydrazonomethyl)phenol (HBN) having single 6-membered hydrogen bonded network reveal that HBOB undergoes imine-amine photoisomerisation by proton transfer towards the oxazole side and HBON undergoes towards the hydrazone side with characteristic Stokes’ shifted emission. Proton transfer forms with the red shifted emission of these molecules shows fast decay than the locally excited state. In the solid state, extremely high fluorescence intensity was observed, following a similar type of ESIPT pattern. Calculated ground (S0) and excited state (S1) energy barriers for the PT process obtained using density functional theory (DFT) and time-dependent density functional theory (TD-DFT) corroborate the unidirectional excited state intramolecular proton transfer (ESIPT) process for HBOB and HBON, and the theoretical spectral features validate our experimental absorption and emission spectra well. Interestingly, the unique unidirectional ESIPT behaviour of HBOB was utilised to detect hydrazine both in solution and solid phases. On the other hand, HBON was found to be a good fluorescence pH sensor with a ratiometric color change from yellow to green in acidic and basic media.

Graphical abstract: Switching of photoinduced proton transfer from one six-membered hydrogen-bonded ring to other: a molecule of hydrazine and pH sensor

Supplementary files

Article information

Article type
Paper
Submitted
14 May 2024
Accepted
21 Jun 2024
First published
21 Jun 2024

Phys. Chem. Chem. Phys., 2024,26, 19290-19301

Switching of photoinduced proton transfer from one six-membered hydrogen-bonded ring to other: a molecule of hydrazine and pH sensor

V. Bhakta and N. Guchhait, Phys. Chem. Chem. Phys., 2024, 26, 19290 DOI: 10.1039/D4CP01998A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements