Issue 36, 2024

Orbital and free energy landscape expedition towards the unexplored catalytic realm of aromatically modified FLPs for CO2 sequestration

Abstract

The emergence of frustrated Lewis pairs (FLPs) has created a whole new dimension in the development of metal free catalysts for CO2 sequestration. Efforts have been made to enhance the catalytic activity of the FLPs. The aromatic modulation of the catalytic sites has been successfully demonstrated to enhance the activity towards CO2. Although various aromatically modified geminal FLPs have been investigated for CO2 capture, the catalytic space of these FLPs has not been fully resolved yet. Thus, to fulfil the knowledge gap in the understanding of the catalytic behaviour and to extend the concept of aromatically enhanced FLPs, in the present study all the possible combinations of aromatic and antiaromatic modulations of the acidic and basic sites have been proposed and examined using density functional theory based orbital analysis. Further to verify the results obtained from the orbital analysis and to fully explore the catalytic space of the proposed systems, free energy landscapes have been examined using metadynamics simulations. The detailed intrinsic bond orbital (IBO) and principal interacting orbital (PIO) analyses capture crucial details of the reactions. Furthermore, evolution of anisotropy of induced current density (AICD) along the reaction justifies the effect of aromatic/antiaromatic modulation on the catalytic sites. The results show that highly asynchronous mechanisms have been found due to the aromatic/antiaromatic modulations. The simultaneous favourable aromatic/antiaromatic modification on the acidic and basic sites may greatly reduce the CO2 activation barrier. The enhancement of the acidic character of the B atom in the intramolecular FLPs (IFLPs) leads to a thermodynamically more feasible reaction with stable CO2 adducts. The acidic site has been found to play a major role in controlling the kinetics and thermodynamics of the reaction. This study provides valuable insights into the catalytic realm of the aromatically modified FLPs, which can be utilized to design more efficient and specific next-generation FLPs.

Graphical abstract: Orbital and free energy landscape expedition towards the unexplored catalytic realm of aromatically modified FLPs for CO2 sequestration

Supplementary files

Article information

Article type
Paper
Submitted
14 May 2024
Accepted
22 Jul 2024
First published
23 Jul 2024

Phys. Chem. Chem. Phys., 2024,26, 23609-23622

Orbital and free energy landscape expedition towards the unexplored catalytic realm of aromatically modified FLPs for CO2 sequestration

M. Faizan, M. Chakraborty, D. Bana and R. Pawar, Phys. Chem. Chem. Phys., 2024, 26, 23609 DOI: 10.1039/D4CP01999G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements